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ON THE MONODROMY OF THE MODULI SPACE OF

CALABI-YAU THREEFOLDS COMING FROM EIGHT PLANES

IN P3

RALF GERKMANN, MAO SHENG†, DUCO VAN STRATEN, AND KANG ZUO

To the memory of Eckart Viehweg

Abstract. It is a fundamental problem in geometry to decide which moduli spaces

of polarized algebraic varieties are embedded by their period maps as Zariski open

subsets of locally Hermitian symmetric domains. In the present work we prove that

the moduli space of Calabi-Yau threefolds coming from eight planes in P3 does not

have this property. We show furthermore that the monodromy group of a good

family is Zariski dense in the corresponding symplectic group. Moreover, we study

a natural sublocus which we call hyperelliptic locus, over which the variation of

Hodge structures is naturally isomorphic to wedge product of a variation of Hodge

structures of weight one. It turns out the hyperelliptic locus does not extend to a

Shimura subvariety of type III (Siegel space) within the moduli space. Besides general

Hodge theory, representation theory and computational commutative algebra, one of

the proofs depends on a new result on the tensor product decomposition of complex

polarized variations of Hodge structures.

1. Introduction

A fundamental result of E. Viehweg [30] states that for any polarized algebraic
variety the coarse moduli space M exists as a quasi-projective variety. It is of
great interest to characterize those cases in which M is a locally Hermitian sym-
metric variety. It has been shown in [31], [32], [18] that Arakelov-type equalities
lead to sufficient conditions for this to happen. In this paper we describe the
techniques of characteristic varieties that leads to necessary conditions that can
be checked by a straightforward calculation in concrete examples. This leads to
a computational tool that we apply to the moduli space of double octics ramified
over an arrangement of eight planes in P3.

As over a coarse moduli space M there usually does not exist a family, we use
the following weaker notion. We say that a proper smooth map f : X → S over
a smooth connected base S is a good family for M, if the moduli map S → M

of f is dominant and generically finite. The local system V := (Rnf∗QX )pr of
primitive cohomomogies has the structure of a weight n polarized variation of Q-
Hodge structures, in short Q-PVHS, over S. Recall that this means, among other
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things, that there is an Hodge filtration F• on the vector bundle V := V ⊗ OS

with flat connection ∇ for which Griffiths transversality ∇Fp ⊂ Fp−1⊗Ω1
S holds.

The associated graded object (E, θ) = (grFV, grF∇) = (
∑

p+q=nE
p,q,⊕p+q=nθ

p,q)

where Ep,q := Fp/Fp−1 are the Hodge-bundles and θ is induced by ∇ is called
the associated Higgs-bundle. In general, we call a PVHS V over S of Calabi-Yau
type (CY-type) if rank En,0 = 1 and the morphism of vector bundles

TS −→ Hom(En,0, En−1,1)

induced by θn,0 : En,0 → En−1,1 ⊗ Ω1
S is an isomorphism at the generic point. It

follows from the Bogomolov-Tian-Todorov theorem on the unobstructedness of
the infinitesimal deformations of a Calabi-Yau manifold X , that for a good family
the map θn,0 is naturally identified with the Kodaira-Spencer isomorphism, so in
such a situation we obtain a PVHS of CY-type.

In this paper we study a particular example of an interesting family of Calabi-Yau
threefolds. An arrangement A of eight planes in general position in P3 determines
a double cover X , which is a Calabi-Yau variety with singularities along 28 lines.

A resolution X̃ of such a double octic has dimH3(X̃) = 20 and carries a weight
3 polarized Hodge structure with Hodge numbers (1, 9, 9, 1). If we vary the ar-
rangement A in a good family, we obtain an irreducible weight three Q-PVHS V

of CY-type over a smooth 9 dimensional base S. We will show several theorems
about V.

Theorem 1.1. V does not factor canonically.

By this we mean the following. Associated to a Hermitian symmetric domain
D0 = G0/K0 there is a special PVHS W on D0 coming from the representation
ρcan : G0 → GL(W ), which is called the canonical PVHS by B. Gross. We say
that V factors canonically if the period map of V factors through the one deter-
mined by certain canonical PVHS (D0, ρcan). For a precise definition see §3.

A way to exclude this happening consists of picking an appropriate point s ∈ S,
compute an appropriate characteristic subvariety of V in P(TS,s) and compare it
with the corresponding object for W. If these varieties are not isomorphic we are
done.

Our example is a member of a well-known infinite series of Calabi-Yau n-folds
coming from double covers of generic arrangements of 2n+ 2 hyperplanes in Pn.
For n = 1 one has the classical theory of four points in P1 and the associated
elliptic curves and their modulus. The paper [17] was devoted to n = 2 case.
Here we have K3-surfaces that are double covers of six lines in the plane. In
[17] it was shown among other things that in this case there is a natural good
family whose associated weight 2 PVHS factors canonically. It was asked by I.
Dolgachev (see [2]) if the n ≥ 3 cases are canonical with respect to (DI

n,n, ρcan),

where ρcan : SU(n, n)
∧n

−→ Sp(
(
2n
n

)
,R) is the indicated representation of real Lie

groups. Motivated by this question, it has been checked in [26] that the primitive
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Hodge numbers of CY n-folds are exactly the same as predicted by Dolgachev for
all n ∈ N.

In the pioneering work [25] a result similar to Theorem 1.1 for more general mod-
uli spaces of configurations was given, but the methods used there are completely
different from ours. Our method is based on classical Hodge theory (see for exam-
ple [10]) and can be applied to many other concrete moduli spaces, for example
the moduli spaces of the Calabi-Yau varieties in toric varieties. Moreover, we
hope to extend the present work to the n ≥ 4 cases.

Using Theorem 1.1 we will prove the

Theorem 1.2. Let s ∈ S be a base point and let

τ : π1(S, s) → Sp(20,Q)

be the monodromy representation associated to V. Then the image of τ is Zariski
dense in Sp(20,R).

Using results of C. Schoen and P. Deligne the above theorem implies:

Corollary 1.3. The special Mumford-Tate group of a general member in MCY

is Sp(20,Q).

However, there exists an interesting subvariety ofMCY where the special Mumford-
Tate groups are proper subgroups of Sp(20,Q). Generalizing a construction from
[17], we define a five-dimensional subvariety HCY ⊂ MCY that we call the hyper-
elliptic locus. Over it, the Hodge structure is isomorphic to ∧3 of a H1(C), where
C is a hyperelliptic curve of genus three. It is natural to ask if this decomposition
can be extended to a larger variety H that contains HCY . Using a calculation of
characteristic subvarieties we arrive at a negative answer.

Theorem 1.4. Let HCY be the hyperelliptic locus of MCY and H be any subvariety
of MCY which strictly contains HCY . Let f : X → S be a good family for MCY

whose moduli map S → MCY is dominant over H. Then the restriction of V to
the inverse image of H does not factor through (DIII

3 ,∧3).

As a corollary we have the following

Corollary 1.5. The special Mumford-Tate group of the Calabi-Yau threefolds in
HCY is a subgroup of Sp(6,Q). Furthermore HCY is maximal with this property.
That is, for any irreducible subvariety H of MCY which strictly contains HCY ,
the special Mumford-Tate group of a general closed point in H is not contained in
Sp(6,Q).

The proof of Theorem 1.2 relies on new results of Hodge-theoretical nature. There
is Theorem 1.6 on the tensor product decomposition of C-PVHS, parallel to the
direct sum decomposition of C-PVHS due to P. Deligne (cf. [5]). Let S̄ denote a
projective manifold, Z a simple divisor with normal crossing and S = S̄ \Z. Let
V denote an irreducible C-PVHS over S with quasi-unipotent local monodromy
around each component of Z. Fix a base point s ∈ S let

ρ : π1(S, s) −→ GL(Vs)
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denote the representation of the fundamental group associated to the underlying
local system of C-vector spaces, where Vs denotes the fibre of V over s. Let G be
the Zariski closure of the image of ρ inside GL(Vs). Assume that G decomposes
into a direct product G1 × · · · × Gk of simple Lie groups. Then according to
Schur’s lemma, we obtain a decomposition of local systems V ∼= V1 ⊗ · · · ⊗ Vk.

Theorem 1.6. Each local system Vi admits the structure of a C-PVHS such that
the induced C-PVHS on the tensor product V1⊗· · ·⊗Vk coincides with the given
C-PVHS on V.

The proof of the theorem is independent of the other results in this paper. We
expect the result to be useful in other situations. In this article it helps to prove
the following classification result.

Theorem 1.7. Let S be a smooth quasi-projective algebraic variety and V be an
weight 3 Z-PVHS over S which is irreducible over C and of quasi-unipotent local
monodromies. If the Hodge numbers of V are (1, 9, 9, 1), then after a possible
finite étale base change the connected component of the real Zariski closure of the
monodromy group of V is one of the following:

(A) SU(1, 1)× SO0(2, 8),
(B) SU(3, 3),
(C) Sp(6,R),
(D) Sp(20,R).

Using this theorem and Theorem 1.1, 1.4 to exclude cases (A), (B) and (C) one
easily obtains Theorem 1.2.

2. Two Calabi-Yau Threefolds

Consider an arrangement A = (H1, ..., H8) of eight planes in P3. Such an arrange-
ment can be given by a matrix A ∈ M(8 × 4,C), the i-th row corresponding to
the defining equation

4∑

j=1

aijxj = 0

of the hyperplane Hi. We say that A is in general position if no four of the planes
intersect in a point. In terms of the matrix A this means that each (4× 4)-minor
is non-zero. We now describe two closely related Calabi-Yau threefolds associated
to such an arrangement A in general position.

2.1. The double octic. The planes of the arrangement A determine a divisor
R =

∑8
i=1Hi on P3. As the degree of R is even and the Picard group of P3 has no

torsion, there exists a unique double cover π : X → P3 that ramifies over R. The
singular locus of such a double octic X is precisely the preimage of the singular
locus of R. Its irreducible components are given by the lines Hij = Hi ∩Hj for
1 ≤ i < j ≤ 8. We fix an ordering of the index set I = {(i, j) ∈ N2 | 1 ≤ i <

j ≤ 8} and let φ : P̃3 → P3 denote the composition of blow-ups whose centers
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are the strict transforms of Hij, taken in the chosen order. The fibre product

X̃ := X ×P3 P̃3 sits in a commutative diagram

X̃
ψ−→ X

π̃ ↓ ↓ π

P̃3 φ−→ P3

In case we start with an arrangement in general position, the variety X̃ thus
obtained is a smooth Calabi-Yau threefold. Note however that a different ordering
of I yields a different birational minimal model of the singular variety X .

Lemma 2.1. The space of infinitesimal deformations of X̃ is naturally isomor-
phic to the space of infinitesimal deformations of A.

Proof. This follows from the description of infinitesimal deformation space of a
double covers obtained in [3]. We let L (resp. L̃) be the line bundles on P3 (resp.

P̃3) in the decomposition

π∗OX = OP3 ⊕L−1 (resp. π∗OX̃ = O
P̃3 ⊕ L̃−1).

It satisfies L⊗2 ≃ OP3(R) (resp. L̃⊗2 ≃ O
P̃3(R̃) for R̃ the strict transform of R

under φ). One has the decomposition of tangent sheaf

π∗TX̃ = TP3(− log R̃)⊕ T
P̃3 ⊗ L̃−1.

It follows that one has natural isomorphism (see also Prop. 2.1 [3])

H1(T
X̃
) ≃ H1(TP3(− log R̃))⊕H1(T

P̃3 ⊗ L̃−1).

By Corollary 4.3 in [3], the space H1(TP3(− log R̃)) is naturally isomorphic to the
space of equisingular deformations of R in P3. Since R is a divisor with normal
crossings, this space is isomorphic to the space of infinitesimal deformations of
the arrangement A in P3. Furthermore, the space of transverse deformation
H1(T

P̃3 ⊗ L̃−1) has dimension (after Prop. 5.1 [3])

h1(T
P̃3 ⊗ L̃−1) = h1(TP3 ⊗ L−1) +

∑

(i,j)∈I

h0(KHij
)

= h1(TP3 ⊗O(−3)) +
∑

(i,j)∈I

h0(KP1)

= 0,

where the vanishing of the first summand follows from Bott’s vanishing theo-
rem on homogenous vector bundles over the projective spaces. The lemma thus
follows. �

From now on we let MAR denote the moduli space of arrangements A of eight

planes in P3 in general position, and let MCY denote the moduli space of X̃.

Corollary 2.2. The moduli map MAR → MCY is étale.
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There are many ways to construct a good family for MAR. Here is one. Let A

be an arrangement in general position. The moduli point of A in MAR can be
uniquely represented by the matrix A of the form:




1 0 0 0 1 1 1 1
0 1 0 0 1 ∗ ∗ ∗
0 0 1 0 1 ∗ ∗ ∗
0 0 0 1 1 ∗ ∗ ∗




t

Conversely a matrix A in the above form whose all 4 × 4 minors are nonzero
represents an arrangement A in general position. Thus MAR can be realized as
an open subvariety of the affine space C9 and it admits a natural good family
f0 : X → MAR, where X is obtained by simultaneous resolution of the singular
double octic over MAR. Note also that a good family for MAR gives rise to a
good family for MCY .

Remark 2.3. This construction and the above lemma can actually be generalized
to arrangements of 2n+ 2 hyperplanes in Pn. It yields a moduli space of smooth

CY n-folds whose primitive Hodge numbers are given by hp,n−ppr (X̃) =
(
n

p

)2
. For

details, we refer to [26].

Now we proceed with the construction of another Calabi-Yau threefold Y for a
given arrangement A.

2.2. The Kummer cover. Let A = (aij) denote a (8× 4)-matrix associated to
A as described above. Furthermore let B = (bij) denote a matrix in M(4× 8,C)
such that the sequence

0 −→ C4 A−→ C8 B−→ C4 −→ 0

is exact. We let Y denote the complete intersection of the four quadrics in P7

defined by the four equations

bi1y
2
1 + bi2y

2
2 + ... + bi8y

2
8 = 0 , 1 ≤ i ≤ 4.

In case A is in general position, the space Y is smooth (see Proposition 3.1.2 in
[28]). There is a simple relation between the singular double octic X and Y . To
describe it, let G1 = F8

2 denote the elementary abelian 2-group of order 256. For
a = (a1, ..., a8) ∈ G1 we define an automorphism σa : P

7 → P7 by

σa(x1 : · · · : xi : · · · : x8) = ((−1)a1x1 : · · · : (−1)aixi : · · · : (−1)a8x8).

The group G1 contains a distinguished normal subgroup N1 � G1 of index two,
the kernel of the map a 7→ ∑8

i=1 ai.

Proposition 2.4. X ∼= Y/N1

Proof. First remark that the matrix A defines a linear embedding j : P3 → P7 of
projective spaces. As Ker(B) = Im(A), the map π1 : P7 → P7, (y1 : ... : y8) 7→
(y21 : ... : y28) maps Y onto the image of j and realizes P3 as the quotient of Y byG1.
The quotient map π1 factors over Y/N1, and the degree of Y/N1 over P3 is two.
The ramification locus of the resulting map α : Y/N1 → P3 is precisely R. Indeed,
the nontrivial element in G1/N1 is represented by any vector ei = (0, ..., 1, ..., 0)
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in the standard bases of F8
2, 1 ≤ i ≤ 8. Consequently, the ramification locus

consists of all points in P7 with one coordinate zero. The embedding j : P3 → P7

maps the planes H1, ..., H8 onto the intersection of j(P3) with the coordinate
hyperplanes in P7. As the double octic X is uniquely determined by R, it follows
X = Y/N1. �

This geometric relation between Y , X and X̃ immediately leads to the following
isomorphism of Hodge-structures.

Proposition 2.5. For a given arrangement A in general position there exists a
natural isomorphism

H3(Y,Q)N1 ∼= H3(X,Q) ∼= H3(X̃,Q)

of rational polarized Hodge structures. (Here H3(Y,Q)N1 denotes the subspace of
invariants under N1.)

Proof. As X = Y/N1, one has immediately has H3(Y,Q)N1 ∼= H3(X,Q),

showing that H3(X,Q) carries a pure Hodge structure. Let ψ : X̃ −→ X be
the resolution map described above. As in general the kernel of the map ψ∗ :

H3(X,Q) −→ H3(X̃,Q) is the part of smaller Hodge-weight (see Corollary 5.42
of [21]), we conclude that ψ∗ is injective. As the dimensions agree, φ∗ is an
isomorphism. (This, of course, can also directly be seen from the Leray spectral
sequence for ψ.)

�

2.3. The hyperelliptic locus. There exist an interesting locus in MAR where
the Hodge-structure is a third exterior power:

H3(X̃,Q) = ∧3H1(C,Q)

where C is a hyperelliptic curve of genus 3. Such a C is obtained by a two-fold
cover of P1 ramified over eight points. There exists a natural morphism

γ : (P1)3 −→ P3

which sends the point s = ((x1 : y1), (x2 : y2), (x3 : y3)) to (c0(x, y) : c1(x, y) :
c2(x, y) : c3(x, y)), where x = (x1, x2, x3), y = (y1, y2, y3) and ci(x, y) is the i-th
coefficient of the polynomial of the variables t, s

3∏

i=1

(xit+ yis) = c0s
3 + c1s

2t+ c2st
2 + c3t

3 ∈ C[s, t].

This morphism γ is Galois covering with Galois group S3, the symmetric group
acting on three letters.

One readily checks that for any p = (a : b) ∈ P1 the set H := γ({p} × P1 × P1) is
the hyperplane with equation

b3z3 − ab2z2 + a2bz1 − a3z0 = 0.

We say that H is the plane associated to the point p.
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Lemma 2.6. Let (p1, ..., p8) denote a collection of eight distinct points in P1, and
let Hi := γ({pi} × P1 × P1) the associated planes. Then A = (H1, ..., H8) is an
arrangement of planes in general position.

Proof. In appropriate coordinates on P1, we may assume that pi = (−1 : ai) with
ai ∈ C pairwise distinct (1 ≤ i ≤ 8). The matrix A ∈ M(8× 4,C) corresponding
to the arrangement A then has the form

A =




1 a1 a21 a31
1 a2 a22 a32
...

...
...

...
1 a8 a28 a38




Every (4× 4)-submatrix of A is a Vandermonde matrix, hence its determinant is
non-zero. This proves that A is in general position. �

Let C be the hyperelliptic curve of genus 3 branched at p1, ..., p8 ∈ P1, and let
q : C → P1 denote the corresponding covering map. The threefold product

h : C3 q3−→ (P1)3
γ−→ P3

is a Galois covering of degree 23 · 6 = 48. Its Galois group G2 is isomorphic to
a semi-direct product N ⋊ S3, where N = 〈ι1, ι2, ι3〉 is the group generated by
the hyperelliptic involution. We let N2 denote the index two subgroup N ′ ⋊ S3

of G2, where N
′ is the kernel of N ∼= F3

2

∑
−→ F2, where the isomorphism sends ι1

to (1, 0, 0) etc. We factor h over the set of N2-orbits and obtain a commutative
diagram

C3 δ−→ C3/N2

q3 ↓ ↓ π

(P1)3
γ−→ P3

Lemma 2.7. The double cover π : C3/N2 → P3 branches along the union of the
hyperplanes H1, ..., H8 associated to the points p1, ..., p8. So C3/N2

∼= X, where
X is the double octic determined by H1, ..., H8.

Proof. The Galois group of π is isomorphic to G2/N2, and it is generated by the
image of ι1. Hence the ramification locus of π is the image of the fixed locus
L1 ⊆ C3 of ι1 under π ◦ δ. By the commutativity of the above diagram, it
coincides with the image of L1 under γ ◦ q3. Obviously we have

q3(L1) = {p1, ..., p8} × P1 × P1

so that our claim follows from Lemma 2.6. As C3/N2 and X are both double
covers of P3 with the same ramification divisor, they are isomorphic. �

Proposition 2.8. Let p1, ..., p8 be eight distinct points in P1, A the associated

arrangement of hyperplanes and X̃ the CY manifold which corresponds to this
arrangement. Furthermore, let q : C → P1 denote the hyperelliptic curve which
ramifies at p1, ..., p8. Then we have an isomorphism of rational polarized Hodge
structures

H3(X̃,Q) ∼= H3(X,Q) ∼= ∧3 H1(C,Q).
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Proof. As X ∼= C3/N2, we have

H3(X,Q) ∼= H3(C3,Q)N2.

Since S3 is contained in N2, we have an inclusion

H3(C3,Q)N2 →֒ H3(C3,Q)S3 ∼= H3(Sym3(C),Q).

Here Sym3(C) denotes the symmetric threefold product of C, i.e. the quotient
space C3/S3 where S3 acts on C3 by permutation of the factors. Let J denote
the three dimensional Jacobian of C. By the Abel-Jacobi theorem, the natural
map ϕ : Sym3(C) → J is birational, and it induces an isomorphism between the
middle cohomology spaces. Thus

H3(Sym3(C),Q) ∼= H3(J,Q) ∼= ∧3 H1(J,Q) ∼= ∧3 H1(C,Q).

Now the latter space is 20 dimensional, which is also the dimension of H3(X̃,Q).

This shows that the inclusion H3(X̃,Q) →֒ ∧3 H1(C,Q) we constructed is actually
an isomorphism. �

Let M8 denote the moduli space of eight points in P1, which is five dimensional.
Lemma 2.6 shows that there exist a natural embedding M8 →֒ MAR. We denote

its image by H̃CY and its image in MCY under the map MAR → MCY by HCY .
We call this the hyperelliptic sublocus.

Remark 2.9. It is worthwhile to remark that the construction generalizes to all
n ≥ 2. It produces a 2n−1 dimensional hyperelliptic locus in the n2 dimensional
moduli of CY manifolds, over which the primitive middle dimensional rational
Hodge structures are wedge products of weight one Hodge structures. For n = 2
the space MCY arises from the moduli space of six lines in P2 in general position.
In [17] the analogous sublocus HCY was characterized as those six lines which are
tangent to a smooth conic, and it was shown that it yields the family of Kummer
surfaces.

3. Classifying spaces and Canonical Variations

We briefly recall some basic facts on Hodge structures and their classifying spaces.
Let V denote a real vector space, n ∈ N and b : V × V → R a non-degenerate
bilinear form which is symmetric if n is even and skew-symmetric if n is odd.
Furthermore, let {hp,q} denote a collection of non-negative integers parameterized
by (p, q) ∈ N2

0 such that

hp,q 6= 0 only if p+ q = n and hq,p = hp,q for all p, q ∈ Z.

The set D of all real Hodge structures of type Φ = (V, {hp,q}, b) is equipped with
a natural structure of a complex manifold, called the classifying space of Hodge
structures of type Φ. It is a homogeneous space of the form D = G/K, where G
denotes the real Lie subgroup of GL(V ) consisting of all R-linear automorphisms
fixing b and where K denotes a compact subgroup of G.
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Now let S be a complex manifold and fix a base point s ∈ S. Every R-PVHS V

of type Φ over S gives rise to a map

φ : S → Γ\D,
called the period map associated to V. Here Γ is the image of the monodromy
representation

τ : π1(S, s) → G

defined by V considered as a local system of real vector spaces. We refer to Chap-
ter I in [10] for more details.

In practice one often encounters situations where the real structure is lost. A
typical example arises from the eigenspace decomposition of the complexification
of the real cohomology of a cyclic cover with respect to the cyclic group action
(see for example [7], [1]). Complex polarized variations of Hodge structures are
also natural objects in Simpson’s correspondence (see [23], §4). We will use this
slightly generalized notion of C-PVHS in this paper and we refer to §1 in [5] for
the notions of complex Hodge structure (C-HS), complex polarized Hodge struc-
ture (C-PHS) and complex polarized variations (C-PVHS). In [5], also classifying
spaces of C-PHS of with given Hodge numbers are defined. The corresponding
classifying spaces of C-PHS are also of form D = G/K where G is a real Lie
group and K is a compact subgroup of G. The difference from that of R-PHS
is in that G is not necessarily Sp(2n,R) or SO(r, s), but can also be a special
unitary group SU(p, q).

Locally homogenous and Canonical variations

Let D0 = G0/K0 be a Hermitian symmetric domain (HSD) with G0 the con-
nected component of the automorphism group of D0 and K0 a maximal compact
subgroup of G0. There are four infinite series of classical domains after E. Cartan:

(I) DI
p,q =

SU(p,q)
S(U(p)×U(q))

, p ≥ q ≥ 1,

(II) DII
n = SO∗(2n)

U(n)
, n ≥ 5,

(III) DIII
n = Sp(2n,R)

U(n)
, n ≥ 2,

(IV) DIV
n = SO0(2,n)

SO(2)×SO(n)
, n ≥ 5.

Now let Γ0 be a torsion free discrete subgroup of G0. Let ρ0 : G0 → GL(F ) be
a finite dimensional complex representation of G0. S. Zucker has shown in §4 of
[33], that the complex local system FΓ0

= (F ×Γ0
D0) over the complex mani-

fold Γ0\D0 admits naturally a structure of C-PVHS, which we will call, following
[33], a locally homogenous PVHS. By construction, it is clear that only when ρ is
defined over R, FΓ0

is a R-PVHS.

The following example of locally homogenous PVHS was considered by B. Gross
in [12] and also appeared in [27] in connection with moduli spaces of Calabi-Yau
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varieties. As explained in Proposition 1.2.6 in [5], D0 determines a special node of
the Dynkin diagram of the simple complex Lie algebra gC = Lie(G0)⊗C. By the
standard theory on the finite dimensional representations of semi-simple complex
Lie algebras, this node also determines a fundamental representation W of gC,
and W integrates to an irreducible complex representation ρcan of G0. When D0

is of tube type, the representation W is exactly the one considered by B. Gross in
[12] and only in this case W does admit an G0-invariant real form. The locally
homogenous PVHS by the above construction are of CY type (cf. §1 in [27]).
Following Gross in [12], we call them canonical PVHS over Γ0\D0. An important
property of it is that the weight of W is equal to the rank of D0.

Definition 3.1. Let (D0, ρ0) be a pair consisting of a HSD D0 and a homomor-

phism ρ0 : G0 → G of real Lie groups and let ψ̃ : D0 → D the map induced from
ρ0 and

ψ : Γ0\D0 → Γ\D, Γ0 := ρ−1
0 (Γ)

1) We say that a C-PVHS V over S factors with respect to (D0, ρ0), when the
period map φ : S → Γ\D of V factors over ψ. That is, we have a diagram

S
φ

//

j ""DD
DD

DD
DD

D Γ\D

Γ0\D0

ψ

;;vvvvvvvvv

commutes.
2) For a C-PVHS V of CY type we say that V factors canonically if it factors
with respect to certain (D0, ρcan)

Lemma 3.2. If V factors with respect to (D0, ρ0), then j induces an isomorphism
of C-PVHS V ≃ j∗F, where F is the locally homogenous PVHS induced by ρ0.
Moreover the monodromy representation τ : π1(S, s) → G of V factorizes over
ρ0, i.e. there exists a homomorphism τ0 : π1(S, s) → G0 such that the diagram

π1(S, s)
τ //

τ0
##HH

HH
HH

HH
H

G

G0

ρ0

??��������

commutes.

Proposition 3.3. Let V be the C-PVHS associated with a good family for the
coarse moduli space MCY . If V factors canonically, then it must factor with
respect to either (DI

3,3,∧3) or (DI
1,1 ×DIV

8 , id⊗ id).

Proof. Assume V factors with respect to (D0, ρcan) for certain HSD D0. By the
local Torelli theorem for Calabi-Yau manifolds we know that D0 is at least 9
dimensional. We write D0 = D1 × · · ·×Dk be the decomposition into product of
irreducible HSD’s. Then ρcan = ρcan,1 ⊗ · · · ⊗ ρcan,k with ρcan,i canonical PVHS
over Di. By Schur’s lemma V ≃ V1⊗· · ·⊗Vk decomposes accordingly. Since the
weight of V is 3, then k ≤ 3.
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Case k = 1:. Then D0 must be of tube type and W associated with ρcan,1 must
be the canonical R-PVHS. By the classification in [12], the pair in the statement
is the only possibility with correct Hodge numbers.
Case k = 2:. Since D0 has rank 3, we can assume D1 has rank 1 and hence D1 is
the unit disk. It follows also the Hodge numbers of V1 over D1 is 1, 1. Since D2

supports canonical R-PVHS, it must be a type IV domain. After checking the
Hodge numbers, one sees immediately the pair (DI

1,1×DIV
8 , id⊗ id) is the unique

possibility.
Case k = 3:. It follows that each Di, i = 1, 2, 3 has rank 1 and so the dimension
of D1 ×D2 ×D3 is less than 9. �

4. Characteristic Subvariety

We refer the reader to §3 in [11] and references therein for an account of the
theory of infinitesimal variations of Hodge structures, in short IVHS, initiated by
P. Griffiths. There is an important series of invariants of IVHS of a C-PVHS V

of CY type over S, namely the characteristic subvarieties which are contained
in the projectivized tangent bundle P(TS). The basic theory of characteristic
subvarieties is developed in [27]. We recall the definition.

Definition 4.1. Let V a C-PVHS of weight n over S of weight n and (E, θ) the
associated Higgs-bundle. For every k with 1 ≤ k ≤ n, the k-th iterated Higgs
field defines a morphism

θk : Symk(TS) −→ Hom(En,0, En−k,k)

with dual map (θk)∗ : Hom(En,0, En−k,k)∗ → Symk(ΩS). Let ak denote the ideal
generated by the image of (θk)∗ in the symmetric algebra Sym•(ΩS). Then for
every k with 1 ≤ k ≤ n− 1, the projective variety

Ck = Proj(Sym•(Ω1
S)/ak+1) ⊂ P(TS)

over S is called the k-th characteristic subvariety of V.

Remark 4.2. For a proper smooth family f : X → S of CY n-folds the Yukawa
coupling of f is the section of Symn(Ω1

S)⊗(Rnf∗OX )
⊗2 defined by the n-th iterated

Kodaira-Spencer maps of f . It has significance in physics and is an important
invariant in the study of geometry on moduli spaces of CY manifolds. Note that
the (n − 1)th characteristic subvariety is just the vanishing locus of the Yukawa
coupling.

Let s ∈ S and (Ck)s be the fiber of Ck over s, which is a subvariety of P(TS,s).
following simple lemma characterizes the tangent vectors at s whose classes lie in
the reduced subvariety (Ck)reds .

Lemma 4.3 (Lemma 3.2 in [27]). Let v ∈ TS,s be a non-zero tangent vector, [v]
its class P(TS,s) and and vk+1 ∈ Symk+1(TS,s) the k+1-th symmetric tensor power
of v. Then:

[v] ∈ (Ck)reds ⊂ P(TS,s) if and only if vk+1 ∈ ker(θk+1).
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Corollary 4.4. Let M be a coarse moduli space of polarized smooth CY n-folds
and f : X → S be a good family for it. Let s ∈ S be a point in the ramification
locus of the moduli map S → M of f . Then there is a projective linear subspace
in (Ck)reds for 1 ≤ k ≤ n− 1.

Proof. The question is analytically local. Let X be the fiber of f over s and [s] be
the image of s in M. By the Bogomolov-Tian-Todorov theorem the differential of
the moduli map of f at s is naturally identified with the Kodaira-Spencer map:

ρf,s : TS,s → H1(X, TX).

Let v ∈ TS,s be a nonzero tangent vector and ω be a generator of H0(X,KX). By
Griffiths we have the formula for the Higgs field action:

θv(ω) = ρf,s(v) ∪ ω,
where the cup product induces isomorphism H1(X, TX)⊗H0(X,KX) ≃ H1(X,Ωn−1

X )
for the CY manifold X . So it is clear that the kernel of ρf,s is exactly the kernel
of the Higgs field θ at s. In particular the corollary follows from Lemma 4.3. �

The main result in [27] identifies the characteristic subvarieties of the canonical
PVHS over an irreducible HSD with the characteristic bundles introduced by N.
Mok in [15].

Theorem 4.5 (Theorem 3 in [27]). Let D0 = G0/K0 be an irreducible HSD of
rank n, Γ0 be a torsion free discrete subgroup of G0 and let (E, θ) be the system
of Hodge bundles associated to the canonical PVHS over T := Γ0\D0. Then for
each k with 1 ≤ k ≤ n− 1 the k-th characteristic subvariety Ck of (E, θ) over T
coincides with the k-th characteristic bundle Sk over T .

The characteristic bundles are first defined over D0 and invariant under the G0-
action. By taking the quotient under the group Γ one obtains the characteristic
bundles on T . For each irreducible HSD the characteristic bundles are explicitly
described in Appendix (III.3) in [16]. For the purpose of this article we need only
the information of the first characteristic bundle for the HSDs DI

3,3, D
III
3 , DIV

8 .
For the convenience of the reader, we state them explicitly here. The following
proposition is direct consequence of Theorem 4.5.

Proposition 4.6. Notations as Theorem 4.5 and t ∈ T arbitrary point. Then
(C1)t as subvariety of P(TT,t) is isomorphic to

(i). P2 × P2 →֒ P8 with the Segre embedding, when D0 = DI
3,3,

(ii). P2 →֒ P5 with the Veronese embedding, when D0 = DIII
3 ,

(iii). Q →֒ P7 with Q a smooth quadratic hypersurface, when D0 = DIV
8 .

For the application we also need to work out the first characteristic subvariety in
the reducible case D0 = DI

1,1 ×DIV
8 .

Proposition 4.7. Notations as last proposition. Let D0 be the HSD DI
1,1 ×

DIV
8 . Then for each point of t ∈ T , (C1)t as subvariety of P(TT,t) is isomorphic

to a disjoint union of a point P with a smooth quadratic hypersurface Q in a
hyperplane of P8 away from P . In particular, it is not equidimensional.
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Proof. We put D1 = DI
1,1 and D2 = DIV

8 and fix the base point 0 ∈ D0. Then the
canonical PVHS W over D0 is given by tensor product W1⊗W2 of the canonical
PVHS Wi over Di, i = 1, 2. Let (Ei, θi) be the corresponding Higgs-bundle to
Wi. Then the corresponding Higgs-bundle (E, θ) to W is given by (E1 ⊗E2, θ1 ⊗
id + id ⊗ θ2). Let pi : D0 → Di, i = 1, 2 be the natural projection. Then one
has natural isomorphism TD0

≃ p∗1(TD1
) ⊕ p∗2(TD2

). Under this isomorphism, we
represent a tangent vector v ∈ TD0,0 by a pair (v1, v2) with vi ∈ TDi,0. Take a

nonzero vector e = e1 ⊗ e2 ∈ (E1,0
1 ⊗ E2,0

2 )0. Then by Lemma 4.3, the fiber over
0 of the first characteristic subvariety of D0 is determined by

{[v] ∈ P(TD0,0)|(θv)2(e) = 0}.
A simple calculation shows that

(θv)
2(e) = 2((θ1)v1(e1)⊗ (θ2)v2(e2)) + e1 ⊗ ((θ2)v2)

2(e2).

Hence v is a characteristic vector if and only if v2 = 0 or, v1 = 0 and v2 is a
characteristic vector in TD2,0. Thus the fiber over 0 of the first characteristic
subvariety is the disjoint union of a point with the fiber over 0 of the first charac-
teristic subvariety of D2, which is isomorphic to a smooth quadratic hypersurface
in P7 by Proposition 4.6 (iii). �

Corollary 4.8. If V factors canonically, then for any s ∈ S away from the ram-
ification locus of the moduli map S → MCY , then (C1)s ⊂ P(TS,s) is isomorphic
to P2 × P2 ⊂ P8 or the P ∪Q ⊂ P8 as in Proposition 4.7.

Proof. This is a consequence of Proposition 3.3 and Propositions 4.6, 4.7. �

5. Explicit Infinitesimal Variation of Hodge Structures of the
Calabi-Yau Threefolds

In those cases where there is an explicit description of the cohomology with the
help of an jacobian ring, it is usually also possible to construct the infinitesimal
invariants of the corresponding variation. In particular, it will be possible to
compute the characteristic subvarieties. We will illustrate this for the local system

V for a good family of double octics f : X → S with fibres X̃ covered by Y .

5.1. Jacobian Rings. As Y is a complete intersection, one can find a description
of the cohomology in terms of a certain Jacobian ring with the aid of the Cayley-
trick. Let

R8,4 = C[x1, ..., x8, y1, ..., y4]

denote the polynomial ring over C in 12 variables. Let the four quadrics defining
Y are given by

fi =

8∑

j=1

bijx
2
j ,

and define

F =

4∑

i=1

yifi ∈ R8,4.
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Let JA denote the homogenous ideal generated by the twelve partial derivatives
∂F
∂xj

and ∂F
∂yi

, and put

RY = R8,4/JA.

There is a natural bigrading on R8,4 which assigns the value (0, 1) to each of the
variables xi and (1,−2) to each yi. It induces a bigrading on RY . For 0 ≤ p ≤ 3

we let R
(p)
Y denote the subspace generated by monomials of bidegree (p, 0), that is,

monomials whose total degree in the xj is 2p and whose total degree in the yi is p.

Proposition 5.1. There is an isomorphism

H3(Y,C) ∼= RY

of C-vector spaces which identifies

H3−p,p(Y) ∼= R
(p)
Y , 0 ≤ p ≤ 3

Proof. See [19], Prop. 2.2.10 on page 40 or [29]. �

In §2.2 we defined the group G1 of sign-changes and its subgroup N1 of index
two. These groups naturally act on the polynomial ring R8,4 by sign-changes on
the xj , 1 ≤ j ≤ 8 and trivially on the yi, 1 ≤ i ≤ 4. There is an induced action

of N1 on the quotient RY . We let R̃Y denote the subring RN1

Y of elements in RY

fixed by every σ ∈ N1.

Corollary 5.2. It induces an isomorphism between the subspaces

H3(X̃,C) ∼= R̃Y

which is also compatible with the Hodge decomposition and the total grading.

Proof. By Proposition 3.4, H3(X̃,Q) is the subspace of H3(Y,Q) invariant under
N1-action and moreover is a sub PHS of H3(Y,Q). So one has

FpH3(X̃,C) = FpH3(Y,C) ∩ H3(X̃,C) = (FpH3(Y,C))N1 .

So the assertion follows. �

5.2. Multiplication and Cup-Product.

Proposition 5.3. For 0 ≤ p ≤ 2 the following diagram commutes

TS,s ⊗ H3−p,p(X̃)
θs−→ H2−p,p+1(X̃)

∼= ↓ ↓ ∼=

R̃
(1)
Y ⊗ R̃

(p)
Y

µ−→ R̃
(p+1)
Y .

Here the vertical arrows are provided by Proposition 5.1 and the above isomor-
phism, and the lower horizontal arrow is the ring multiplication map.

Proof. First we recall that in §3 we associate each element in S a smooth complete
intersection of four quadrics Y in P7. Let g0 : Z → Z be a good family over the
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moduli space of smooth complete intersection of four quadrics in P7. So one has
the natural closed embedding S →֒ Z. Put

h0 = g0|S : Y = Z|g−1

0
(S) → S.

Globalizing the construction in Proposition 2.5 to h0, one obtains a new family

h̃0 : Ỹ → S admitting N1-action over S, and by taking quotient of it under N1-
action one recovers the family f0 : X → S. In summary, one has the following
commutative diagrams

X
f0

��

Ỹπoo

h̃0
��

σ // Y
h0=g0|S

��

→֒ // Z
g0

��
S S=

oo
=

// S
→֒ // Z.

Now we let W = R3g0∗QZ and (F, η) be the system of Hodge bundles associated
with W. By construction, it is clear that V ≃ (W|S)N1 as PVHS. It follows that
for v ∈ TS,s ⊂ TZ,s one has natural identification

θs(v)(α) = ηs(v)(α),

where α ∈ H3−p,p(X̃) ≃ H3−p,p(Y)N1 ⊂ H3−p,p(Y).

Furthermore, for the IVHS of W at s, one has the following commutative diagram
(see Proposition 2.6 in [29])

TZ,s ηs−→ ⊕
pHom(H3−p,p(Y),H2−p,p+1(Y))

∼= ↓ ↓ ∼=

R
(1)
Y −→ ⊕

pHom(R
(p)
Y , R

(p+1)
Y ),

where the lower horizontal arrow is induced by the ring multiplication map.

Finally one has the following commutative diagrams by the construction of the
families h0, h̃0 and f0:

TS,s
∩

��

ρf0,s// H1(X̃, TX̃)

��

≃ // H2,1(X̃)

��
TZ,s

ρg0,s// H1(Y, TY)
≃ // H2,1(Y).

This shows that under the left vertical isomorphism TZ,s → R
(1)
Y (in the second

paragraph), the image of TS,s is exactly R̃(1)
Y . The proposition follows by putting

everything above together. �

5.3. Calculation. Now we proceed to describe the computation of the charac-
teristic subvarieties introduced in §4. According to Proposition 5.3, the action of
Higgs field on the cohomology classes along a given tangent vector is equivalent

to the multiplication of corresponding elements in R̃Y with some fixed element
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in R̃
(1)
Y . Furthermore, since R̃

(0)
Y is one-dimensional, there exists a isomorphism

Hom(R̃
(0)
Y , R̃

(k)
Y ) ∼= R̃

(k)
Y . Hence in our case the k-th iterated Higgs fields

(θs)
k : Symk(TS,s) −→ Hom(H3,0(X̃),H3−k,k(X̃))

is given by the multiplication map

µk : Sym
k(R̃

(1)
Y ) −→ R̃

(k)
Y .

It follows that the k-th characteristic subvariety at s is isomorphic to

(Ck)s = P(Sym·((R̃
(1)
Y )∗/ak+1) ,

where ak+1 denotes the image of the dual µ∗
k+1 : (R̃

(k+1)
Y )∗ → Symk+1((R̃

(1)
Y )∗)

of the multiplication map. Fixing a basis of R̃
(1)
Y determines an isomorphism

P(Sym·((R̃
(1)
Y )∗)) ∼= P8. This shows that the first characteristic subvariety (C1)s

can be computed by the following steps. Let (u1, ..., u9) and (v1, ..., v9) denote
the elements of B1 and B2, respectively.

(1) Fix a bijection

φ : {(i, j) ∈ N2 | 1 ≤ i ≤ j ≤ 9} ∼−→ {1, ..., 45} ,

and define a basis B = (w1, ..., w45) of Sym
2(R̃

(1)
Y ) by wφ(i,j) = uiuj. Com-

pute the representation matrix C ∈ M(9 × 45,C) of the multiplication
map µ2 with respect to B and B2.

(2) Let B∗
1 = (u∗1, ..., u

∗
9) denote the dual basis of B1, and let the basis B̃ =

(w̃1, ..., w̃45) of Sym
2((R̃

(1)
Y )∗) be defined by w̃φ(i,j) = u∗iu

∗
j . Determine the

representation matrix D = (dij) ∈ M(45× 9,C) of the dualized multipli-

cation µ∗
2 with respect to B∗

2 and B̃.
(3) For the k-th column of D define a polynomial fk ∈ C[z1, ..., z9] by

fk =
9∑

i=1

9∑

j=i

dφ(i,j)kzizj .

Let a2 be the ideal generated by f1, ..., f9. Then (C1)s is isomorphic to the
projective subvariety in P8 which corresponds to a2.

Remark 5.4. Step (1) can be carried out in practice using computer algebra. For
each pair (i, j), one computes the product g1g2 of the polynomials gi, gj ∈ R8,4

which correspond to the basis vectors wi, wj ∈ B1 and reduces it with respect to
the Jacobian ideal JA. The result can be expressed as a linear combination of the

elements in B2. For step (2) notice that B̃ is related to the dual basis B̃∗ of B by

w̃φ(i,j) =

{
w̃∗
φ(i,j) if i = j

1
2
w̃∗
φ(i,j) if i 6= j.

By a similar procedure, we can compute the characteristic subvariety (C2)s. We
skip the details here, because it will not be used in the sequel.
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5.4. A general point and a special point. Here we summarize the results of
the calculations that can be performed by the method explained above. First, if
we pick a generic configuration A giving a general point η0 ∈ MCY and determine
the ideal

a2 ⊂ C[z1, . . . , z9]

consisting of 9 quadratic polynomials. Using a Gröbner-basis calculation one can
verify the following (see [9] for details):

Proposition 5.5. The characteristic subvariety (C1)η0 over a general point η0 in
the moduli space MCY is empty set.

We will now chooses a special point s0 ∈ H̃CY represented by the matrix A ∈
M(8 × 4,C) with

At =




1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
1 4 9 16 25 36 49 64
1 8 27 64 125 216 343 512




Proposition 5.6. The characteristic subvariety (C1)reds0 consists of two irreducible
surfaces of degree 6, each spanning the same P7 ⊂ P8.

Remark 5.7. For the point s0 the ideal a2 9 quadratic polynomials in the vari-
ables z1, z2, . . . , z9. We analyzed this ideal using the computer algebra system
Singular. Via a Hilbert-series computation, one shows that the variety in P8

has dimension two an is of degree 12. In order to find the irreducible components
of this surface, one has to make a primary decomposition of the ideal a2. For this
we had to use several tricks.

By elimination of the first five variables we obtain an hypersurface of degree 8
in variables z6, z7, z8, z9. By looking at reductions modulo various primes p, it
was observed that the octic factors as product of two quartics over Fp in case
p = 1 mod 4. With some more work one finds a factorization of the octic into
two quartics over the field Q(

√
−1).

Both quartics have a smooth twisted cubic as singular locus. Because the generic
plane section is a three nodal quartic, we see that these two quartic surfaces are
irreducible over C. The decomposition of the degree 8 surface into two quartics
gives a splitting of the degree 12 surface in P8 into two components, which are
surfaces of degree 6.

The change in degree from 12 to 8 is due to the fact the projecting out the first
five variables is non-generic. If instead we eliminate the variables z1, z5, z6, z8, z9
one finds that the degree 6 components project to sextic surfaces, whose plane
section is a 10-nodal sextic, hence rational. Such surfaces are in fact ruled and
can be obtained as join in P7 of corresponding points on a conic and rational
normal curve of degree four and are cut out by 15 quadrics in P7. Indeed, it turns



MONODROMY OF CY THREEFOLDS 19

out that both components are contained in the hyperplane of P8 given by

2269z1 − 378z2 + 21x3 − 1029z4 + 147z5 − 7z6 + 192z7 − 24z8 + z9 = 0

By taking ideal quotients one can find a complete primary decomposition of the
ideal a2. There are embedded components of dimension one contained in the
union of the two scrolls.

6. Proof of the Main Theorems

Theorem 6.1. Let f : X → S be a good family of MCY and V be the associated
weight 3 PVHS. Then V does not factor canonically.

Proof. Assume the contrary. By Corollary 4.8, for any s ∈ S away from the
ramification locus of the moduli map S → MCY the first characteristic subvariety
(C1)s is then isomorphic to either P2 × P2 or P ∪Q. In particular, in both cases
there exists an irreducible component in (C1)s whose dimension is greater than
2. By Proposition 5.5 the fiber of the first characteristic subvariety at a general
point [η0], the image of η0 in MCY , is empty. By semi-continuity, there is an
open neighborhood of [η0] in MCY such that the fibers of the first characteristic
subvariety over the closed points in it are empty. Therefore there exists also
a closed point in S away from the ramification locus of the moduli map of f ,
over which the fiber of the first characteristic subvariety is empty. This gives a
contradiction. �

Our next aim is to prove Theorem 6.3. For the proof of it, we use the notations
as in §1. We first prove the following

Lemma 6.2. Each factor Vi has quasi-unipotent local monodromy around each
irreducible component of Z.

Proof. We put V′ = V2 ⊗ · · · ⊗ Vk and n = rankV′. One considers the C-PVHS∧n
V =

∧n(V1 ⊗ V′). By Exercise 6.11 (b) in [8] SymnV1 is a direct factor of∧n
V. Since V is of quasi-unipotent local monodromy, the same holds for each

direct factor of
∧n

V, in particular for Symn(V1). Thus one induces that V1 itself
is also of quasi-unipotent local monodromy, and therefore so is V′. By induction
on the number of factors k in the tensor decomposition of V, one concludes that
each factor has quasi-unipotent local monodromy. �

Theorem 6.3. Each local system Vi admits the structure of a C-PVHS such that
the induced C-PVHS on the tensor product V1⊗· · ·⊗Vk coincides with the given
C-PVHS on V.

Proof. Let s ∈ S be a base point and let ρi : π1(S, s) → Gi be the monodromy
representation of Vi. We put V1 to be the fiber of V1 at s. Since ρi is a Zariski
dense representation into the simple Lie group Gi with quasi-unipotent local
monodromy around Z, by [13] there exists a pluri-harmonic metric on the flat
bundle Vi with finite energy, which makes Vi into a Higgs bundle (Ei, θi) over
S. Furthermore in [14] Mochizuki has analyzed the singularity of this harmonic
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metric in detail and has shown that (Ei, θi) admits a logarithmic extension (Ēi, θ̄i)
over S̄, i.e. a vector bundle Ēi over S̄ which extends Ei and a map

θ̄ : Ēi −→ Ēi ⊗ Ω1
S̄(logZ)

which coincides with θ over S. Such a pluri-harmonic metric is called tame. In
this case the residue of θ̄ along Z is unipotent.

From the proof of Lemma 6.2 we know that one finds a non-trivial component
Symn(V1) in

∧n(V1 ⊗ V′). Since ρ1 is Zariski dense in G1 and G1 is simple,
one finds a suitable Schur functor Sµ such that Sµ(ρ1) is a nontrivial irreducible
direct factor of

∧n(V1 ⊗ V′). Since
∧n(V1 ⊗ V′) is semi-simple, there exists a

decomposition
n∧
(V1 ⊗ V′) =

m⊕

i=1

Wi1 ⊗Wi2

where the Wi1 are irreducible and the Wi2 are trivial. By Proposition 1.13 in
[5], there exist uniquely determined C-PVHS on the Wi1 and complex Hodge
structures on the Wi2 such that the direct sum of the tensor products of them
coincides with the C-PVHS on

∧n(V1⊗V′). In particular, there exists a C-PVHS
on Sµ(V1).

By the uniqueness of the such pluri-harmonic metrics, the induced pluri-harmonic
metric on Sµ(Ē1, θ̄1) coincides with that of the C-PVHS on Sµ(V1). Hence
Sµ(Ē1, θ̄1) is a fixed point of the C×-action. The Schur functor Sµ induces a
nontrivial morphism G1 → GL(Sµ(V1)), which is injective since G1 is simple. It
induces the morphism

φµ : M(π1(S), G1)
ss −→ M(π1(S),GL(Sµ(V1)))

ss

between the corresponding moduli spaces of semi-simple representations. By
Corollary 9.16 in [24], the morphism φµ is finite.

If Z = ∅, then C× acts on both moduli spaces continuously via the Hermitian
Yang-Mills metric on poly-stable Higgs bundles (E, tθ), and this action is com-
patible with φµ. Since Sµ(ρ1) is a fixed point of the C×-action, the representation
ρ1 itself is a fixed point of the C×-action. Hence (E1, θ1) is a C-PVHS on V1.
Now we consider the general situation Z 6= ∅. Let C ⊆ S̄ denote a curve which
is a complete intersection of ample hypersurfaces, and define C0 = C \Z. Taking
the restriction

ρ1|C0
∈ M(π1(C0), G1)

ss ,

we have Sµ(ρ1)|C0
∈ M(π1(C0),GL(Sµ(V1)))

ss. Now we consider the map

φµ : M(π1(C0), G1)
ss −→ M(π1(C0),GL(Sµ(V1)))

ss.

By Simpson’s main theorem in [22], there exist Hermitian Yang-Mills metrics on
poly-stable Higgs bundles on C with logarithmic poles of the Higgs field on C∩Z.
The C×-action can be defined on both spaces of semi-simple representations on
C0 via a Hermitian Yang-Mills metric on (Ē, tθ̄). Applying the same arguments
as above to the compact case, we show that the pullback of (Ē1, θ̄1) to C0 is a
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fixed point of the C×-action. If we choose C0 sufficiently ample, then (Ē1, θ̄1) is
also a fixed point of the C×-action. Again by [22], (Ē1, θ̄1) is a C-PVHS on V1.

Since V′ is a direct factor V∗
1⊗V1⊗V′ = V∗

1⊗V, V′ admits a C-PVHS as well. The
tensor product of C-PVHS on V1 and V′ is a C-PVHS on V1 ⊗ V′. By Deligne’s
uniqueness theorem on C-PVHS on irreducible local systems, the tensor product
coincides with the original C-PVHS on V1⊗V′ = V. By induction on the number
of factors k, we conclude the proof of the theorem. �

Theorem 6.4. Let S be a smooth quasi-projective algebraic variety and V be a
weight 3 Z-PVHS over S which is irreducible over C and of quasi-unipotent local
monodromies. If the Hodge numbers of V are (1, 9, 9, 1), then after a possible
finite étale base change the connected component of the real Zariski closure of the
monodromy group of V is one of the following:

(A) SU(1, 1)× SO0(2, 8),
(B) SU(3, 3),
(C) Sp(6,R),
(D) Sp(20,R).

Proof. Let s ∈ S be a base point of S and V be the fiber of V at s. Let τ :
π1(S, s) −→ GL(V ⊗Z R) be the monodromy representation of V ⊗ R and G be
the Zariski closure of τ . So we have the factorization

τ : π1(S, s) → G
ρ−→ GL(VR)

where ρ is a morphism of real algebraic groups. Since V is of polarized and of
Z-coefficients, G is semi-simple by Deligne (cf. Corollary 4.2.9 in [4]). Since V is
of weight 3 and the dimension of V is 20, G is a semi-simple real Lie subgroup
of Sp(20,R). Let G0 be the connected component of G. The classification of G0

consists of several steps.

Step 1. Let g be the Lie algebra of G0 and χ : gC −→ sp20C be the complex-
ification of the differential of ρ. Then the pair (gC, χ) is one of the following
list:

(1) (sl(2),Γ19) (7) (sl(2)⊕ so(5),Γ3 ⊗ Γ10)
(2) (so(5),Γ03) (8) (so(5)⊕ sl(2),Γ01 ⊗ Γ4)
(3) (sp(6),Γ00100) (9) (so(5)⊕ so(5),Γ10 ⊗ Γ02)
(4) (sl(6),Γ00100) (10) (sl(2)⊕ so(5),Γ1 ⊗ Γ02)
(5) (sp(20),Γ1000000000) (11) (sl(2)⊕ so(10),Γ1 ⊗ Γ10000)
(6) (sl(2)⊕ sl(2),Γ3 ⊗ Γ4)

Here we use the notations as given in [8]. The list results from a rather standard
calculation in the representation theory of semi-simple complex Lie algebras. As
gC is semi-simple, we can write gC = ⊕m

i=1gi into direct sum of simple Lie alge-
bras. By Schur’s lemma and since χ is irreducible, we have the tensor decom-
position of χ = ⊗χi into irreducible representations. Then one has particularly∏m

i=1 di = 20, where di is the dimension of the representation space of χi. It
is straightforward to write down a complete list of irreducible representations of
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complex simple Lie algebras whose dimensions divide 20. For each pair (gC, χ)
where χ : gC → sl(20) in this preliminary list, it appears in the final list, i.e. χ
factors through sp(20) ⊂ sl(20) if and only if ∧2χ contains a trivial representa-
tion. This can be easily checked by using the plethysm of semi-simple complex
Lie algebras.

Step 2. Let GC be the complexification of G0. Then by Lemma 4.4 in [23], G0

is a real form of GC which is of Hodge type (see §4 [23] for the definition). We
shall make use of the list of all simple real Lie groups of Hodge type on Page 50
[23]. In connection with the list in Step 1, one can immediately exclude the case
where g is simple but gC is not simple by Proposition 4.4.10 in [23]. Hence the
number of irreducible factors in g is equal to that of gC.

Step 3. We start with two factors. Namely, G0 = G1×G2 with Gi simple real Lie
groups. It induces the tensor decomposition of real local systems VR = V1 ⊗ V2.
By Theorem 6.3 there exist C-PVHS structures on V1 and V2 such that the in-
duced PVHS on V coincides with the original one. It follows that the Lie groups
G1 and G2 are also of Hodge type. By Lemma 5.5 in [23] Vi, i = 1, 2 underlies
R-PVHS structure. Recall that the weight of V is three and its Hodge numbers
are 1, 9, 9, 1. Then after a possible permutation of factors the PVHS V1 must be
of weight 1 with Hodge numbers 1, 1 and V2 is of weight 2 with Hodge numbers
1, 8, 1. This implies G1 = SU(1, 1) and G2 ⊆ SO(2, 8). This excludes imme-
diately the case (8) of the list in Step 1. It excludes also the cases (4)-(7) by
checking the dimension of representation on sl(2)-factor. Let us now consider the
case (9). Note that the representation Γ02 is simply the second wedge power of
the standard representation in this case. By the list in [23] G2 can be one of the
groups SO(5), SO(1, 4) or SO(2, 3). Since SO(5) is compact, it is mapped into
the compact form SO(10) of SO(10,C) under ∧2 of the standard representation
of SO(5,C). Also one checks that under the same representation the other two
real forms SO(1, 4) and SO(2, 3) are mapped into the real forms SO(6, 4) and
SO(4, 6) respectively. Thus the case (9) can be excluded. So it remains (10) for
the non-simple case. Obviously G2 = SO0(2, 8) and this gives the case (A).

Step 4. We treat the case that gC is simple. By the list in [23], G0 can be
SU(1, 1) in case (1), SO(5) ,SO(2, 3) and SO(1, 4) in case (2), SU(p, 6 − p) in
case (3), Sp(20,R) in case (4). Note that except for SO(1, 4) the rest groups
are of Hermitian type. For them, by consideration of weight and Hodge numbers
as in Step 3 we can exclude all cases except SU(3, 3) and Sp(20,R), which give
case (B) and (C) respectively. Finally one can check directly that the real form
SO(1, 4) of SO(5,C) does not map into the split form Sp(20,R) of Sp(20,C)
under the third wedge power. For this, one can consult for example Example 3,
§7 in [20]. This completes the classification. �

Theorem 6.5. Let f : X → S be a good family of MCY and V be the associated
weight 3 Z-PVHS. Let s ∈ S be a base point and let

τ : π1(S, s) → Sp(20,R)
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be the monodromy representation associated to V ⊗ R. Then the image of τ is
Zariski dense in Sp(20,R).

Proof. Let G be the real Zariski closure of τ . Note that the Zariski dense property
is not changed under a finite étale base change. By Theorem 6.4 it is to show for
V in the statement the connected component G0 of G can not be the case (A) or
(B). Assume the contrary and we shall deduce a contradiction in the following.
Note that by the proof of Theorem 6.4, the inclusion G → Sp(20,R) comes up
with a uniquely determined morphism of real algebraic groups ρ : G→ Sp(20,R),
which restricts to ρ0 on G0. Actually ρ0 has already appeared in Proposition 3.3
implicitly. It is easy to verify that ρ0 in each case maps the maximal compact
group K0 of G0 into the compact subgroup U(1) × U(9) of Sp(20,R). Let Γ be
the monodromy group of τ and Γ0 = ρ−1(Γ) ⊂ G. So we get a factorization

τ : π1(S, s)
τ0−→ Γ0

ρ−→ Γ.

This gives a factorization of the period map of V

φ : S
j−→ Γ0\G/K ψ−→ Γ\Sp(20,R)/U(1)× U(9)

where K is the maximal compact group of G. Since S is connected, the morphism
j factors though Γ′

0\G0/K0 ⊂ Γ0\G/K for Γ′
0 = Γ0 ∩ G0. Thus we arrive at

the factorization in Definition 3.1. Since ρ0 : G0 → Sp(20,R) gives rise to the
canonical PVHS, the factorization contradicts with the assertion of Theorem 6.1.
The proof is completed. �

Corollary 6.6. The special Mumford-Tate group of a general member in MCY

is Sp(20,Q).

Proof. Let f : X → S be a good family forMCY . Let V be the associated weight 3
Q-PVHS of f and τ : π1(S, s) → Sp(20,Q) be the monodromy representation. By
Deligne and Schoen (see for example Lemma 2.4 [31]), the connected component
of the Q-Zariski closure of the monodromy group is a normal subgroup of the
special Mumford-Tate group Hg(V) of V, which is equal to the special Mumford-
Tate group of a general closed fiber of f . By Theorem 6.5 the Q-Zariski closure
of the monodromy group of V has to be the whole symplectic group Sp(20,Q),
the corollary follows since the moduli map of f is dominant. �

Theorem 6.7. Let HCY be the hyperelliptic locus of MCY and H be any subvariety
of MCY which strictly contains HCY . Let f : X → S be a good family of MCY

whose moduli map S → MCY is dominant over H. Then the restriction of V to
the inverse image of H does not factor through (DIII

3 ,∧3).

Proof. We first prove the statement for the good family f0 over MAR. Assume
that an extension H for f0 as in the theorem does exist. We can assume dimH = 6

without loss of generality. Let H̃ be the inverse image of H in MAR and f ′
0 = f0|H̃

the restriction of f0 to H̃ ⊂ MAR. Let φ be the period map of f0 and φ′ that of
f ′
0. By assumption one has the factorization

φ′ : H̃
j−→ Γ0\Sp(6,R)/U(3) ∧3

−→ Γ\Sp(20,R)/U(1)× U(9).
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By Corollary 2.2 and the local Torelli theorem for CY manifolds, φ is étale over its
image. So is the restriction φ′. Because Γ0\Sp(6,R)/U(3) is of six dimensional,

j is then étale. We derive the contradiction at the special point s0 ∈ H̃CY ⊂ H̃.
We denote by C1 the first characteristic subvariety of f0 and C′

1 that of f ′
0. By

Proposition 4.6 (ii), the fiber (C′
1)s0 as subvariety of P(T

H̃,s0
) is isomorphic to the

P2 into P5 via the Veronese embedding. In particular (C′
1)s0 is reduced. On the

other hand, by Lemma 4.3 we know that

(C′
1)s0 = ((C1)s0 ∩ P(T

H̃,s0
))red,

where the scheme-theoretical intersection of the right hand side is taken in the
projective space P(TMAR,s0). Now by Proposition 5.6, (C1)s0 is two dimensional
and has two irreducible components which are not contained in any linear pro-
jective subspace of dimension ≤ 6. It follows that ((C1)s0 ∩ P(T

H̃,s0
))red is of

dimension ≤ 1. A contradiction. Thus such an extension H for f0 does not exist.

As a consequence we get the maximal property of HCY stated in Corollary 1.5.
This fact shows in turn the non-extension property for other good families in the
theorem. Let f be such a good family. As above we can assume dimH = 6.
We put S ′ to be inverse image of H under the moduli map S → MCY . The
factorization of the period map gives the morphism j : S ′ → Γ0\Sp(6,R)/U(3)
and it induces an isomorphism V|S′ ≃ j∗W with W the canonical R-PVHS over
Γ0\Sp(6,R)/U(3). Let VQ be the Q-PVHS associated to f . The canonical PVHS
W over Γ0\Sp(6,R)/U(3) has also a natural Q-structure WQ such that over the
points in HCY the isomorphism between V and j∗W is defined over Q . Thus
we have actually isomorphism (VQ)|S′ ≃ j∗WQ. This implies that the special
Mumford-Tate group of a general closed point in S ′ and hence in H is contained
in Sp(6,Q). This contradicts with Corollary 1.5. �
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